Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions.
نویسندگان
چکیده
In this work we studied changes in passive elastic properties of rat soleus muscle fibers subjected to 14 days of hindlimb unloading (HU). For this purpose, we investigated the titin isoform expression in soleus muscles, passive tension-fiber strain relationships of single fibers, and the effects of the thick filament depolymerization on passive tension development. The myosin heavy chain composition was also measured for all fibers studied. Despite a slow-to-fast transformation of the soleus muscles on the basis of their myosin heavy chain content, no modification in the titin isoform expression was detected after 14 days of HU. However, the passive tension-fiber strain relationships revealed that passive tension of both slow and fast HU soleus fibers increased less steeply with sarcomere length than that of control fibers. Gel analysis suggested that this result could be explained by a decrease in the amount of titin in soleus muscle after HU. Furthermore, the thick filament depolymerization was found to similarly decrease passive tension in control and HU soleus fibers. Taken together, these results suggested that HU did not change titin isoform expression in the soleus muscle, but rather modified muscle stiffness by decreasing the amount of titin.
منابع مشابه
Effects of beta(2)-agonist clenbuterol on biochemical and contractile properties of unloaded soleus fibers of rat.
The effects of clenbuterol beta(2)-agonist administration were investigated in normal and atrophied [15-day hindlimb-unloaded (HU)] rat soleus muscles. We showed that clenbuterol had a specific effect on muscle tissue, since it reduces soleus atrophy induced by HU. The study of Ca(2+) activation properties of single skinned fibers revealed that clenbuterol partly prevented the decrease in maxim...
متن کاملThe ubiquitin-protein ligase Nedd4 targets Notch1 in skeletal muscle and distinguishes the subset of atrophies caused by reduced muscle tension.
Ubiquitination-dependent proteolysis is a fundamental process underlying skeletal muscle atrophy. Thus, the role of ubiquitin ligases is of great interest. There are no focused studies in muscle on the ubiquitin ligase Nedd4. We first confirmed increased mRNA expression in rat soleus muscles due to 1-14 days of hind limb unloading. Nedd4 protein localized to the sarcolemmal region of muscle fib...
متن کاملEffects of cutaneous receptor stimulation on muscular atrophy developed in hindlimb unloading condition.
The aim of this study was to investigate whether stimulation of the cutaneous mechanoreceptors of the rat foot sole could partially or totally prevent the soleus muscle atrophy developed after 14 days in hindlimb unloading conditions. Final experiments were achieved under deep anesthesia using pentobarbital sodium (60 mg/kg, ip injection). Atrophy was characterized by a significant decrease in ...
متن کاملHuman vastus lateralis and soleus muscles display divergent cellular contractile properties.
The purpose of this study was to investigate potential differences in single-fiber contractile physiology of fibers with the same myosin heavy chain isoform (MHC I and MHC IIa) originating from different muscles. Vastus lateralis (VL) and soleus biopsies were obtained from 27 recreationally active females (31 +/- 1 yr, 59 +/- 1 kg). A total of 943 single fibers (MHC I = 562; MHC IIa = 301) were...
متن کاملMechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle.
The effects of mechanical unloading and reloading on the properties of rat soleus muscle fibers were investigated in male Wistar Hannover rats. Satellite cells in the fibers of control rats were distributed evenly throughout the fiber length. After 16 days of hindlimb unloading, the number of satellite cells in the central, but not the proximal or distal, region of the fiber was decreased. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 92 4 شماره
صفحات -
تاریخ انتشار 2002